
ME 171

Computer Programming

Language

Partha Kumar Das
Lecturer,

Department of Mechanical Engineering, BUET

Lecture 3

Variables, Data Types, I/O

1. Variables and Constants

2. Data Types

3. Program Input and Output

Program Variables
• In programming, a variable is a

container (storage area) to hold data.

• In real world you have used various

type containers for specific purpose.

• For example you have used suitcase

to store clothes, match box to store

match sticks etc.

• In the same way variables of

different data type is used to store

different types of data.

• For example integer variables are

used to store integers, char variables

are used to store characters etc.

 So in C, every variable has two most fundamental attributes:

1. Data Type: Which types of data is to be used (int, char, float, double, etc).

2. Variable Name: Which name (identifier) is to be used to address and identify the

variable in the code.

data_type (space)variable_name

Program Variables

int playerScore;

Data type: integer type data Variable name: playerScore

• As variable name is an identifier, it follows the same rules of naming an identifier.

• Most important property of a variables name is its uniqueness. Not two variables in C can

have the same name with same visibility. For example:

Naming of Variables

#include<stdio.h>

int main(){

int a=5; //Visibility is within main block

int a=10; //Visibility is within main block

/* Two variables of same name */

printf("%d",a);

return 0;}

Output: Build Error (redefinition of ‘a’)

#include<stdio.h>

int a=5; //Visibility is within the whole

program

int main(){

int a=10; //Visibility within main block

printf("%d",a);

return 0;}

Output: 10

Naming of Variables

#include<stdio.h>

int main(){

int a=10; //Visibility within main block.

{

a+=5; //Accessing outer local variable a.

int a=20; //Visibility within inner block.

a+=10; //Accessing inner local variable a.

printf("\t%d\t",a); //Accessing inner local variable a.

}

printf("%d",a); //Accessing outer local variable a.

return 0;

}

Variable Declaration and Definition
• Declaration of variables means to acknowledge the compiler only about variable

name and its data type with its modifiers but compiler doesn’t reserve any

memory for the variables.

• In c we can declare any variable with the help of extern keyword while it has

not initialized. Example of declaration:

• C statement in which a variable gets a memory is known as definition of

variable.

• In the above c statement all variables has been declared and defined at the same

time.

• If any variable has not been declared then it declaration occurs at the time of

definition.

extern int a; // Declaration of variable a

int a; //Definition of variable a

static int a; //Definition of variable a

register int a; //Definition of variable a

extern int a=5; //Definition (Declaration plus Initialization) of variable a

Self Study: Surf the internet for static int, register int, auto int, ……(Storage class)

Variable Declaration and Definition

#include<stdio.h>

extern int a;

int main(){

a=100;

printf("%d",a);

return 0;}

• Since declaration variable doesn’t get any memory space so we cannot assign any

value to variable. For example:

Output: Build Error

• We can declare any variable either globally or locally.

• A same variable can be declared many times.

#include<stdio.h>

extern int a; //Declaration of variable a

extern int a; //Again declaration of variable a

int a=5; //Definition of variable a (global variable)

int main(){

printf("%d",a);

return 0;}

Output: 5

Variable Declaration and Definition

#include<stdio.h>

int main(){

int a=100;

printf(“%d”,a);

int b;

b=a++;

printf(“%d”,a)

return 0;

}

• Variable declaration or definition must appear first in the main function.

WRONG

#include<stdio.h>

int main(){

int a=100,b;

printf(“%d”,a);

b=a++;

printf(“%d”,a)

return 0;

}

CORRECT

N.B.: Early C compiler needs all local variable definitions before the actual code of function starts (to generate right stack

pointer calculation). This was the only way of declaring local variables in early C language, both pre-standard (K&R) and

first C standard, C90, published at 1989-1990 (ANSI X3.159-1989, ISO/IEC 9899:1990).

But C99 - the 1999 year ISO standard (ISO/IEC 9899:1999) of C allows declarations in the middle of function.

Variable Declaration and Definition

#include<stdio.h>

extern int a=5;

int main()

{

printf("\t%d",a);

return 0;

}

#include<stdio.h>

extern int a=5;

int main()

{

a=100;

printf("\t%d",a);

return 0;

}

a=5; // variable initialization

• Assigning a value against a variable for the first time is known as variable initialization.

Program Constants

• The value of a constant can not be changed in entire code.

• Two methods of defining a constant in C:

1. using # define

2. using const keyword

1. Using #define

• Should be defined before main function.

• No need for specification of data type of the constant.

• Its not a statement, so no semicolon (;) should be put.

NOTE: Any line in C that ends with a semicolon is called a statement.

2. Using const keyword

• Can be defined both globally or locally..

• Definition is similar to variable definition with const keyword before the data type.

#define TRUE 1

#define FALSE 0

#define Grade ‘A’ //Character Constant

#define PI 3.1416

#define CONST “String Constant” // String Constant

const int id=44;

const float PI = 3.1416;

const int grade; // no value is

assigned

Program Constants

String Constants

Escape Sequence

• Sometimes, it is necessary to use

characters which cannot be typed or

has special meaning in C programming.

• For example: newline(enter), tab,

question mark etc.

• In order to use these characters, escape

sequence is used.

• For example: \n is used for newline.

• The backslash (\) causes "escape"

from the normal way the characters are

interpreted by the compiler

1. Variables and Constants

2. Data Types

3. Program Input and Output

Data Types

• Data types in c refer to an extensive system used for declaring variables or

functions of different types.

• The type of a variable determines how much space it occupies in storage

and how the bit pattern stored is interpreted.

Bit-field

Custom Data Type

typedef

Storage Size of Data Types

• The char data type is usually 1

byte, it is so called because they

are commonly used to store single

characters.

• The size of the other types is

dependent on the hardware of your

computer.

• On "32-bit" machines the int data

type takes up 4 bytes (232).

• The short is usually smaller, the

long can be larger or the same size

as an int and finally the long long

is for handling very large numbers.

Type Storage size Value range

char 1 byte -128 to 1 27 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes -32,768 to 32,767 or

-2,147,483,648 to 2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

long int 4 bytes -2,147,483,648 to 2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

sizeof(char) <= sizeof(short) <= sizeof(int)

<= sizeof(long)

NOTE: signed, unsigned, long, short are known as modifiers.

Storage Size of Data Types

Type Storage size Value range

char 1 byte -128 to 1 27 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes -32,768 to 32,767 or

-2,147,483,648 to 2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

long int 4 bytes -2,147,483,648 to 2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

int main()

{

printf("sizeof(char) == %d\n", sizeof(char));

printf("sizeof(short) == %d\n", sizeof(short));

printf("sizeof(int) == %d\n", sizeof(int));

printf("sizeof(long) == %d\n", sizeof(long));

printf("sizeof(long long) == %d\n",

sizeof(long long));

return 0;

}

 What is the output if you are using 64 bit

compiler??

Google “Data Size Neutrality and 64-bit Support”.

Pass your Leisure

Why Range of signed char is -128 to 127 not -127 to 128??

127= 0 1 1 1 1 1 1 1
1= 0 0 0 0 0 0 0 1

(Addition) 128= 1 0 0 0 0 0 0 0

So in Machine, 10000000 = -128

Sign bit Data bit

• This method is known as 2’s complement.

• Almost all modern computers use this representation .

• How is -127 read in machine?

-128 + 1 = -127

1 0 0 0 0 0 0 0 (-128)

0 0 0 0 0 0 0 1 (1)

1 0 0 0 0 0 0 1 (-127)

• 2’s Complement

0 1 1 1 1 1 1 1

//8-bit binary for absolute

value of -127

1 0 0 0 0 0 0 0

// all bits flipped

1 0 0 0 0 0 0 1

// 1 added to the complement

• So, -127 = 1 0 0 0 0 0 0 1

Storage Size of Data Types

Type Storage size Value range Precision

float 4 byte 1.2E-38 to 3.4E+38 6 decimal places

double 8 byte 2.3E-308 to 1.7E+308 15 decimal places

long double 10 byte (or 12 byte) 3.4E-4932 to 1.1E+4932 19 decimal places

#include <stdio.h>

#include <float.h>

int main() {

printf("Storage size for float : %d \n", sizeof(float));

printf("Minimum float positive value: %E\n", FLT_MIN);

printf("Maximum float positive value: %E\n", FLT_MAX);

printf("Precision value: %d\n", FLT_DIG);

return 0;

}

Question: Explain the memory consumption, storage size and value range of char, int and float type data.

Do Try At Home

Modifiers

• Modifiers are used to modify the storage size and data range of a variable.

• Should be written before or after the data type of a variable.

long int a=50;

Modifier Data type Variable name Value of the Variable

• Modifier without a data type assumes integer type data.

long a=25;

It is equivalent to: long int a=25;

signed a=25;

It is equivalent to: signed int a=25;

• We cannot use two modifiers of same type of modification in any particular data type of c.

short long int i;

static auto char c;

signed unsigned int array[5];

 signed long int i;

#include<stdio.h>

int main(){

char a='A';float b=6.0;

printf("%d\t",sizeof(6.0));

printf("%d\t",sizeof(b));

printf("%d",sizeof(90000));

printf("\t%d\t",sizeof(int));

printf("%d\t",sizeof(long));

printf("%d\t",'A');

printf("%d\t",a);

printf("%c",a);

return 0;

}

Review

=8

=4

=4

=4

=4

=65

=65

=A // this can also be found by

printf("%c", 'A');

CHECK printf("%d\t",sizeof(long long));

1. Variables and Constants

2. Data Types

3. Program Input and Output

Input and Output in C
• Interactions with environment is not so easy for a programming language.

• There are several library functions for taking inputs and showing outputs from user.

• Input and output can be provided as simple letter, text, or in the form of file.

• The simplest input mechanism is to read a character at a time.

• Some common input and output functions are:

getch(), getche(), getchar(), putchar()

gets(), puts()

scanf(), printf()

getc(),putc(), fgets(), fputs(), fscanf(), fprintf(). // for data file input and output

• C programming treats all the devices as files.

• So devices such as the display are addressed in the same way as files

• The following three files are automatically opened when a program executes to provide access

to the keyboard and screen.

• The file pointers are the means to access the file for reading and writing purpose.

Standard File File Pointer Device

Standard input stdin Keyboard

Standard output stdout Screen

Standard error stderr Your screen

getchar() and putchar()

int getchar(void)

int putchar(int)

• Reads the next available single character at a time from the standard input

(keyboard) and returns it as an integer.

• Shows the passed single character at a time on the standard output (screen) and

returns the same character (on success, otherwise, returns EOF and sets the error

indicator (ferror).)

#include <stdio.h>

int main() {

int c;

printf("Enter a value :");

c = getchar(); / / try using getch(), getche()

printf("\nYou entered: ");

putchar(c);

return 0;}

http://www.cplusplus.com/EOF
http://www.cplusplus.com/ferror

gets() and puts()

char *gets(char *s)

int puts(const char *s)

• Reads a line from the standard input (keyboard) as a string until either a

terminating newline or EOF (End of File)

• EOF has a value -1 by default.

• Shows or writes the passed line or string on the standard output (screen) until it

reaches the terminating null character ('\0'). This terminating null-character is not

copied to the stream.

• On success, a non-negative value is returned.

On error, the function returns EOF and sets the error indicator (ferror)

http://www.cplusplus.com/EOF
http://www.cplusplus.com/ferror

gets() and puts()

#include <stdio.h>

int main() {

int c;

printf("Enter a value :");

c = getchar();

printf("\nYou entered: ");

putchar(c);

return 0;}

#include <stdio.h>

int main() {

char c[10];

printf("Enter :");

gets(c);

printf("\nYou entered: ");

puts(c);

return 0;}

scanf() and printf()

int scanf(const char *format, ...)

int printf(const char *format, ...)

• reads the input from the standard input stream stdin and scans that input

according to the format provided.

• writes the output to the standard output stream stdout and produces the output

according to the format provided.

• The format can be a simple constant string, but one can specify %s, %d, %c, %f,

etc., to print or read strings, integer, character or float respectively.

#include <stdio.h>

int main() {

char str[100];

int i;

printf("Enter a value :");

scanf("%s %d", str, &i);

printf("\nYou entered: %s %d ", str, i);

return 0;

}

format of scanf()

• Whitespace character: The scanf() function will read and ignore any

whitespace characters encountered before the next non-whitespace character

(whitespace characters include spaces, newline and tab characters). A single

whitespace in the format string validates any quantity of whitespace

characters extracted from the stream (including none).

• Non-whitespace character, except format specifier (%): Any character that

is not either a whitespace character (blank, newline or tab) or part of

a format specifier (which begin with a % character) causes the function to

read the next character from the stream, compare it to this non-whitespace

character and if it matches, it is discarded and the function continues with the

next character of format. If the character does not match, the function fails,

returning and leaving subsequent characters of the stream unread.

• Format specifiers: A sequence formed by an initial percentage sign (%)

indicates a format specifier, which is used to specify the type and format

of the data to be retrieved from the stream and stored into the locations

pointed by the additional arguments.

%d Integer Signed decimal integer

%i Integer Signed decimal integer

%o Integer Unsigned octal integer

%u Integer Unsigned decimal integer

%x Integer Unsigned hexadecimal int (with a, b, c, d, e, f)

%X Integer Unsigned hexadecimal int (with A, B, C, D, E, F)

%f Floating point Signed Floating point value

%e Floating point Signed Floating point value

of the exponential form

%g Floating point Signed value in either e or f form, based on

given value and precision. Trailing zeros and

the decimal point are printed if necessary.

%E Floating point Same as e; with E for exponent.

%G Floating point Same as g; with E for exponent if e format used

%c Character Single character

%s String pointer Prints characters until a null-terminator is

pressed or precision is reached

%% None Prints the % character

Format Specifier

Format Modifier

9 8 7 6

9 8 7 6

9 8 7 6

9 8 7 6

0 0 9 8 7 6

Format Modifier

9 8 . 7 6 5 4

- 9 . 8 7 6 5 e + 0 1

9 8 . 7 7

9 8 . 7 7

9 8 . 7 6 5 4

9 . 8 8 e + 0 1

9 . 8 8 e + 0 1

9 . 8 7 6 5 4 0 e + 0 1

... (additional arguments) of scanf()

• Depending on the format string, the function may expect a sequence of

additional arguments, each containing a pointer to allocated storage

where the interpretation of the extracted characters is stored with the

appropriate type.

• There should be at least as many of these arguments as the number of

values stored by the format specifiers. Additional arguments are ignored

by the function.

• These arguments are expected to be pointers: to store the result of

a scanf operation on a regular variable, its name should be preceded by

the reference operator (&) .

getc(), putc(), fgets(), fputs(),

fscanf(), fprintf().

Data File input/output

• Until now we have take input of some data and read corresponding output.

• All this input and output data are temporarily stored in RAM and become

unavailable after closing the program.

• For some practical purpose some data need to be stored in Hard Disk as files and

take input from the files.

• Data may be saved in a file using C and the file may be used in a program to get

access of the saved data.

• Data file that is saved in a computer drive/disk may be opened for reading,

writing or appending.

• The most commonly used functions for these purposes are

fopen and fclose

fprintf and fscanf

fputs and fgets

• This operation reduces the headache of a programmer to entry a huge amount of

data every time he run the program.

DATA FILE I/O

Format:

FILE *file_pointer_name;
• FILE is a built in structure which is written in stdio.h header file

and its members are

• We don’t need to write the whole structure,

just write

FILE *fa;

FILE *fp;

FILE *test1, *test2;

DATA FILE FORMAT IN C

fprintf and fscanf
• fprintf is used to write data in an opened file

• fscanf is used to read data from an opened file

• fprintf(filepointer,“formatspecifier”,arguments);

• fscanf(filepointer,“formatspecifier”,&arguments);

fputs and fgets
• fputs is used to write string in an opened file

• fgets is used to read string from an opened file

• fputs(“string”,filepointer);

• fgets(stringvar,number_of_character+1,filepointer);

#include<stdio.h>

int main (void){

FILE *fa; /* file pointer*/

int a = 10,c; float b = 15.9,d;

fa = fopen("D:\\filename.txt","w");

fprintf(fa,"a = %d, b = %f", a, b);

fscanf(fa,"%d %f",&c,&d);

printf("a = c = %d, \t b = d = %f", a, b);

fclose(fa);

return 0;

}

The code will create a txt file

named as filename that contains

a = 10, b = 15.9

fprintf and fscanf

#include<stdio.h>

void main (void){

FILE *fa;

int a = 10,c; float b = 15.9,d;

fa = fopen("D:\\filename.txt","w");

fprintf(fa,“ a = %d, b = %f”, a, b);

fclose(fa);

fa = fopen("D:\\filename.txt","r");

fscanf(fa,"%d %f",&c,&d);

printf("c=%d and d=%f", c, d);

fclose(fa);

}

fprintf and fscanf
#include<stdio.h>

void main (void){

FILE *fa;

int a = 10,c; float b = 15.9,d;

fa = fopen("D:\\filename.txt","w");

fprintf(fa,"%d %f", a, b);

fclose(fa);

fa = fopen("D:\\filename.txt","r");

fscanf(fa,"%d %f",&c,&d);

printf("c=%d and d=%f", c, d);

fclose(fa);

}

fputs() and fgets()
#include<stdio.h>

main(){

char getline[60];

FILE *fp;

fp=fopen("D:\\test.txt","w");

fputs("I have to be a good programmer",fp);

fclose(fp);

fp=fopen("D:\\test.txt","r");

fgets(getline,31,fp); //30 characters + 1

puts(getline);

fclose(fp);

}

What if one writes
fputs("I have to be a good programmer\n I am not a

good programmer",fp);

• fgets() reads characters from stream and

stores them as a C string into str until

(character number-1) characters have

been read or either a newline or the end-

of-file is reached, whichever happens first.

• A terminating null character is

automatically appended after the

characters copied to str.

